Филогенез нервной системыЖивая ткань обладает свойством раздражимости, т. е. способностью так или иначе реагировать на внешние воздействия. Возникновение нервных клеток означало появление специализированного аппарата для приема, накопления и перераспределения раздражающих стимулов, сначала в масштабе отдельных зон, а затем всего организма. Образование связей между нервными клетками и формирование примитивной нервной системы привело к качественно новому уровню интеграции организма.

Примитивная нервная система устроена по принципу синцития, т. е. клеточной сети, причем возбуждение может распространяться в любом направлении, нервный импульс адресован всем.При такой структуре невозможна тонкая координация реакций, но все же обеспечивается участие всего организма в той или иной реакции. Накопление возбуждения в такой нервной сети уже создает предпосылки для следовых реакций, своеобразной памяти. В этих условиях реакция на данный раздражитель может зависеть от предшествующих раздражителей, от краткой предыстории организма.

По мере развития организмов и совершенствования их морфо-функциональной организации нервная регуляция начинает характеризоваться быстротой проведения раздражения и более «прицельной» направленностью. Передача импульсов раздражения по нервным путям напоминает сообщение, направленное по определенному точному адресу. Дальнейшее усложнение нервной системы заключается во все большей специализации нервных клеток, в появлении аффективных (воспринимающих) и эффективных (реализующих) систем. Формирование рецепторов — особых нервных окончаний со специфической функцией, расположенных на периферии и воспринимающих раздражение, — означало дифференцированное восприятие сигналов, настройку на прием определенных раздражителей. Специализация нервных клеток сопровождалась появление синапсов, обеспечивающих одностороннее проведение нервных импульсов. Вероятно, на этом этапе возникают примитивные кольцевые структуры регуляции отдельных функций.

В ходе эволюции формируются автономные нервные узлы ганглиц, осуществляющие регуляцию одной или нескольких функций. При этом довольно отчетливым становится региональный принцип иннервации: каждый нервный узел соответствует определенной области, определенному сегменту тела. На уровне отдельного сегмента осуществляется весьма четкая и многообразная регуляция.

Благодаря ганглиозной нервной системе становятся возможными сложные формы реагирования: в ганглиях заложены разнообразные программы действия. Однако сегменты связаны между собой недостаточно и еще не выражено координирующее влияние какого-либо одного центра. Подобные сложные автоматизмы широко представлены в мире насекомых.

В дальнейшем развитие нервной системы шло по пути нарастающего доминирования головных отделов, что привело к формированию головного мозга, коры больших полушарий как наивысшего отдела центральной нервной системы. Такое направление филогенеза нервной системы носит название принципа цефализации (encephalon — головной мозг).

Наибольшей сложности нервная система достигает у млекопитающих, у которых наблюдается значительное развитие коры больших полушарий, а также связей, соединяющих оба полушария.

Формируются проводящие системы, имеющие огромное значение для регуляции функций всего организма.

Для нервной системы человека характерно максимальное развитие коры больших полушарий, особенно лобных долей. Поверхность коры головного мозга у человека занимает 11/12 всей поверхности мозга, причем около 30% приходится на лобные доли.

Проводящие системы мозга у человека также достигают наивысшего развития.

Цефализация нервной системы в процессе эволюции характеризовалась образованием в головном мозге центров, которые все больше подчиняли себе нижележащие образования. В итоге в головном мозге сформировались жизненно важные центры автоматической регуляции различных функций организма. Между этими центрами также существует некоторая субординация, иерархия. Большое значение приобретает вертикальная организация интеграции и управления, т.е. постоянная циркуляция импульсов между выше- и нижележащими отделами.

Долгое время считалось, что высшие нервные центры оказывают постоянное тормозящее влияние на низшие, поэтому при поражении высших отделов растормаживаются низшие уровни интеграции.

Наибольшую известность получила теория диссолюции, согласно которой поражение эволюционно молодых центров приводит к активизации эволюционно более старых отделов, т.е. наблюдается как бы обратный ход эволюционного процесса (диссолюция), растормаживание древних форм реагирования. Действительно, в неврологической клинической практике наблюдаются случаи, когда при поражении высших центров выявляется избыточная активность низших центров. Однако суть этих нарушений не в диссолюции, не в высвобождении низших центров из под влияния высших.

Высшие центры не только тормозят деятельность низших. При нарушении центральных влияний снижается гибкость регулирования и автоматизм этого процесса становится примитивным и грубым.

Кроме того, активизация нижележащих центров может выступать как проявление компенсаторных процессов.

В иерархии нервных центров особое место занимает кора больших полушарий. Благодаря поступлению информации от всего организма, от различных функциональных систем в коре возможны наиболее сложная аналитико-синтетическая деятельность по переработке информации, образование связей, позволяющих закреплять индивидуальный опыт, и блокирование тех связей, которые утрачивают свое значение. В конечном итоге — самосовершенствование живых систем, принятие решений, основанных не только на анализе данной ситуации, но и на учете предшествующего опыта. Благодаря коре больших полушарий у человека формируется речевая функция — важнейший инструмент человеческой деятельности.